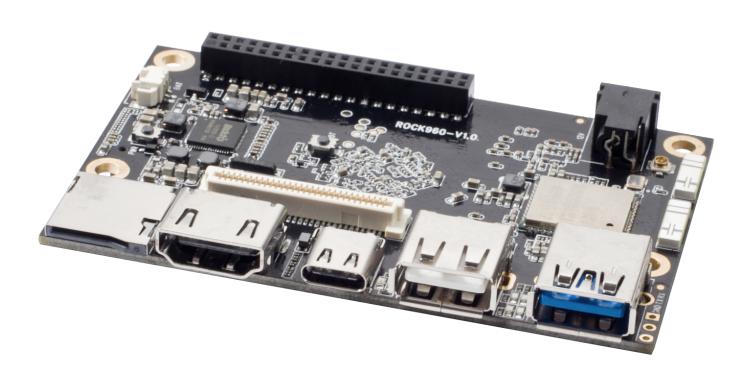
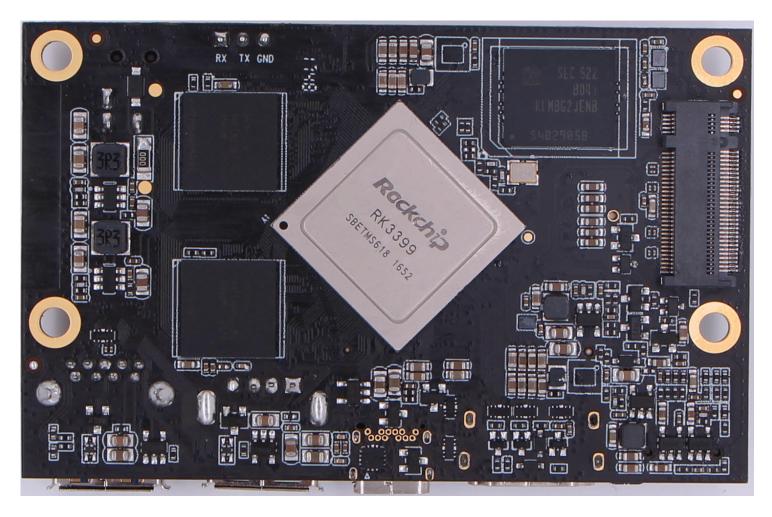
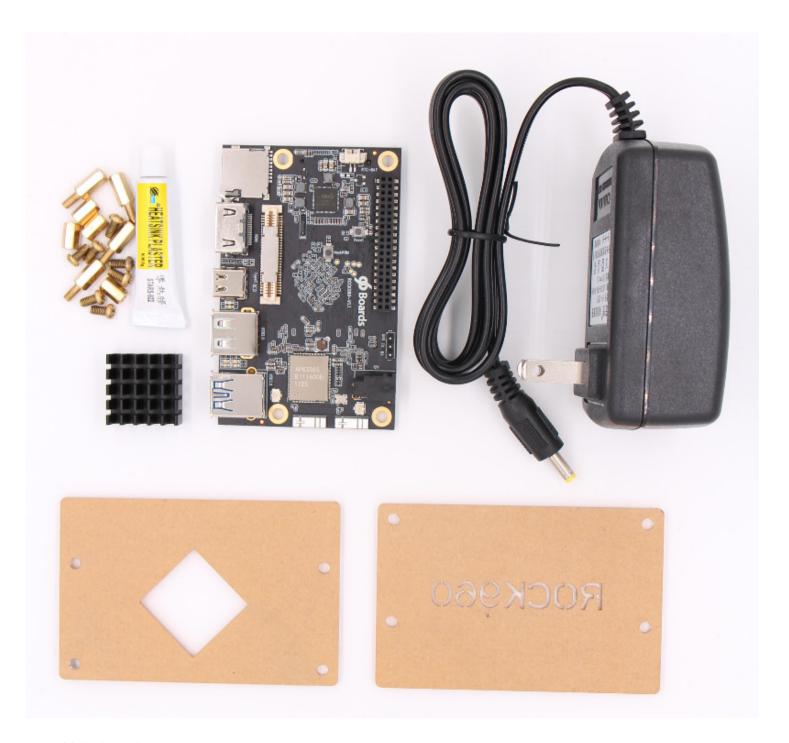

ROCK960 Development Board User Manual


Table of Contents


- Table of Contents
- Introduction
- What's in the Box
- Board Overview
- Key Components
- System Block Diagram
- Getting Started
 - Prerequisites
 - Starting the board for the first time
- · Component Details
 - Processor
 - PMIC
 - Memory (DRAM)
 - Storage
 - Micro SDHC
 - Boot ROM
 - Networking
 - WiFi
 - Bluetooth
 - GPS
 - HDMI
 - MIPI-DSI
 - Camera Interface
 - USB Ports
 - USB Host ports
 - USB Device ports
 - Audio
 - DC Power
 - Power Measurement
 - External Fan Connection
 - UART
 - Buttons
 - LED Indicators
 - Additional Functionality
- Expansion Connectors
 - Low Speed Expansion Connector
 - High Speed Expansion Connector
 - Analog Expansion Connector
- Power Management Overview
 - Block Diagram
 - DC Power Input
 - Power Source Selection and Sequencing
 - Voltage Rails
- Mechanical Specification

Introduction

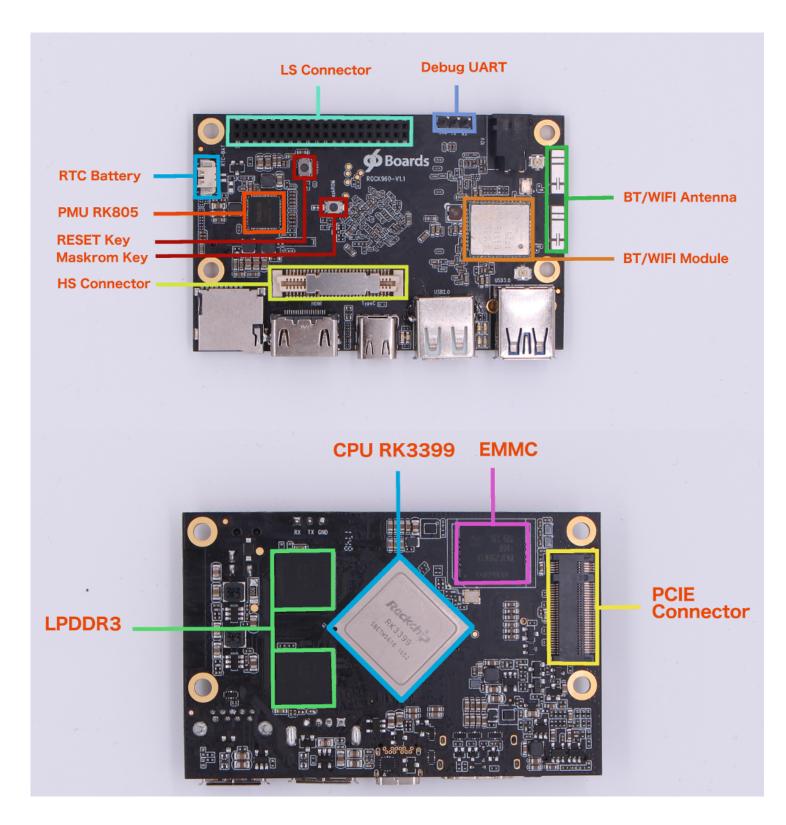
The ROCK960 Development Board is a 96Boards compliant community board based on Rockchip RK3399 platform. The following table lists its key features:

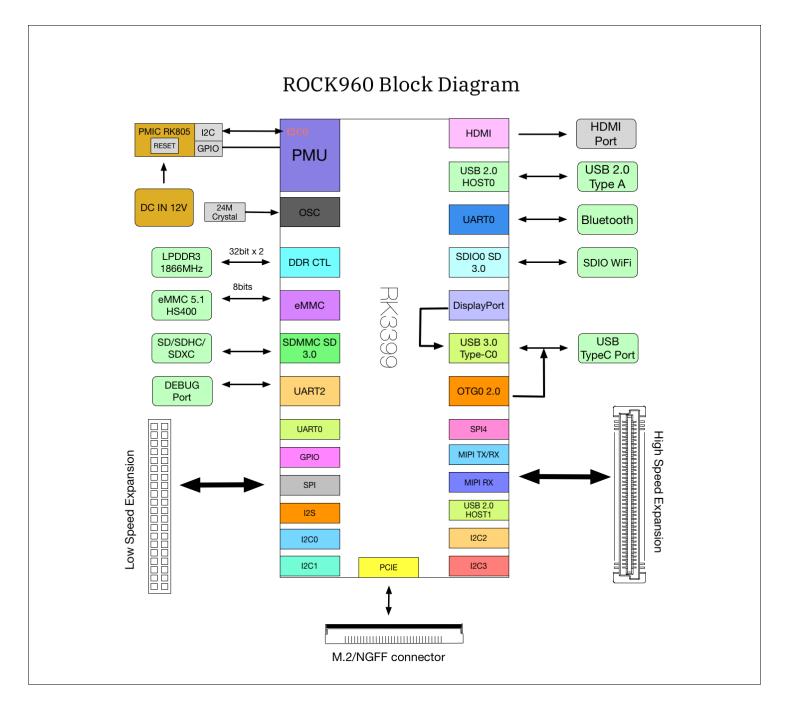


Component	Description
SoC	Rockchip RK3399
CPU	ARM Cortex-A72 Dual-core up to 1.8GHz + Cortex A53 Quad-core up to 1.4GHz
GPU	ARM Mali T860MP4
RAM	2GB or 4GB LPDDR3 @ 1866MHz
PMU	RK805
Storage	16/32GB eMMC 5.1
Ethernet Port	USB 2.0/3.0 expansion
Wireless	WLAN 802.11 ac/a/b/g/n, 2xMIMO, 2.4GHz and 5Ghz, Bluetooth 4.2. On board WLAN/BT antennas.
USB	1 x USB 3.0 type A and 1 x USB 2.0 type A (host mode only) and 1 x USB 3.0 type C OTG

Component	Description
Display	1 x HDMI 2.0(Type A - full) up to 4Kx2K@60Hz, 1 x 4L - MIPI DSI up to 1080p@60Hz, 1 x DP 1.2(Type C) up to 4Kx2K@60
Video	Inside decoder: H.264 10bit up to HP level 5.1 - 2160p@60fps (4096x2304), VP9 - 2160p@60fps(4096x2304), H.265/HEVC 10bit - 2160p@60fps(4096x2304), MPEG-1, MPEG-2, MPEG-4, H.263, VP8, VC-1.
Audio	HDMI output
Camera	2 x 4-lane MIPI CSI
Expansion Interface	40 pin low speed expansion connector: +1.8V, +5V, DC power, GND, 2UART, 2I2C, SPI, I2S, 12xGPIO and 60 pin high speed expansion connector: 4L-MIPI DSI, I2C x2, SPI (48M), USB 2.0, 2L+4LMIPI CSI
LED	1 x WiFi activity LED (Yellow), 1 x BT activity LED (Blue) and 4 x User LEDs (Green)
Button	Reset button, recovery button
Power Source	Recommend a 12V@2A adapter with a DC plug which has a 4.75mm outer diameter and 1.7mm center pin with standard center-positive (EIAJ-3 Compliant)
OS Support	AOSP/Debian/Ubuntu/Fedora/LibreELEC/Lakka/FlintOS
Size	85mm x 55mm

What's in the Box


The standard ROCK960 packages contains the follow:


- Main board

- 12V/2A power adapter
 Transparent acrylic case
 Screws(M3)
 Heatsink(22mm x 22mm)
 Heatsink Plaster

Board Overview

System Block Diagram

Getting Started

Prerequisites

Before you power up your ROCK960 Board for the first time you will need the following:

- ROCK960 Board, model A or model B.
- A 96Boards compliant power supply (sold separately).
- A HDMI or DVI LCD Monitor that supports a resolution of 720p/1080P/4K.
- HDMI-HDMI cable or HDMI-DVI cable to connect the board to the Monitor.

- A computer keyboard with USB interface.
- · A computer mouse with USB interface.

Starting the board for the first time

To start the board, follow these simple steps:

- 1. Connect the HDMI cable to the ROCK960 Board HDMI connector and to the LCD Monitor.
- 2. Connect the keyboard to USB connector marked USB2.0 and the mouse to the USB connector marked USB3.0. (It doesn't matter which order you connect them in.)
- 3. Plug the power supply into the power outlet.
- 4. The system will automatically boot when the power supply is connected.

Back to top

Component Details

Processor

RK3399 is a low power, high performance processor for computing, personal mobile internet devices and digital multimedia devices; it integrates dual-core Cortex-A72 and quad-core Cortex-A53. RK3399 supports multi-format video decoders including H.264/H.265/VP9 up to 4Kx2K@60fps, especially, H.264/H.265 decoders support 10bits coding, and also supports H.264/MVC/VP8 encoders by 1080p@30fps, high-quality JPEG encoder/decoder, and special image preprocessor and postprocessor. RK3399 has high-performance dual channel external memory interface (2x32bit LPDDR3) capable of sustaining demanding memory bandwidths. Learn more at RK3399 Product Page.

PMIC

The PMIC on ROCK960 is RK805, a companion PMIC for RK3399 by Rockchip.

The RK805 is a complete power supply solution for portable systems. The highly integrated device includes four buck DC-DC converters, three high performance ldos, I2C interface, programmable power sequencing and an RTC.

The RK805 improves performance, reduces component count and size, and therefore provides lower cost solution compared to conventional portable designs.

The ultra fast 2MHz current mode DC/DC architecture optimizes the transient performance and is compatible with tiny low cost ceramic inductors and capacitors. All DC/DC channels include integrated MOSFETS. Internal soft-start and compensation circuits minimize external components count. Most outputs can be programmed through the I2C interface

The RK805 integrates internal RC oscillator for low cost application which without RTC function.

Memory (DRAM)

The ROCK960 Board provides 2GB(model A) or 4GB(model B) LPDDR3-SDRAM which is a 2-channel and 32bit width bus implementation interfacing directly to the RK3399 build-in LPDDR controller. The maximum DDR clock is 933MHz. It's soldered on board and not replaceable.

Storage

The ROCK960 Board provides an 16GB(model A) or 32GB(model B) EMMC which is compliant with EMMC 5.1.

Micro SDHC

The ROCK960 Board SD slot signals are routed directly to the RK3399 SDIO interface. It meets the SD3.0 standard.

Boot ROM

The ROCK960 Board can boot up from the EMMC or the Micro SD card. If a bootable Micro SD card is inserted, ROCK960 will boot from Micro SD card and ignore the EMMC. If the Micro SD card is not inserted or non-bootable(ie. as storage media). The ROCK960 will try to boot from EMMC. If there is no bootable image in EMMC, the board will go to Maskrom mode and wait for USB command from host.

Networking

WiFi

The wifi/bt module used on ROCK960s is AP6356s from AMPAK Technology. The AP6356s module complies with IEEE 802.11 a/b/g/n/ac 2x2 MIMO standard and it can achieve up to a speed of 867Mbps with dual stream in 802.11n to connect the wireless LAN.

- 802.11a/b/g/n/ac dual-band radio with virtual-simultaneous dual-band operation
- Dual-stream spatial multiplexing up to 867 Mbps data rate
- Supports 20, 40, 80 MHz channels with optional SGI(256 QAM modulation)
- Supports IEEE 802.11 ac/n beam forming

The ROCK960 Board also has a RF connector to connect the external antenna or other RF device. If you want to use this function, you should change the 0ohm resistor directions besides the antenna.

Bluetooth

- Bluetooth specification V2.1+EDR, 3.0+HS and 4.1+HS compliant
- Integrated PA with 8dBm (class 1) transmit power
- Typical Rx sensitivity: GFSK -94dBm, DQPSK -93dBm, 8-DPSK -87.5dBm.

Display Interface

HDMI

RK3399 support HDMI 1.4 and 2.0, up to 10-bit depth color mode, up to 1080p at 120Hz and 4Kx2K at 60Hz HDTV display resolutions and up to QXGA graphic display resolutions.

MIPI-DSI

- The 96Boards specification calls for a MIPI-DSI implementation via the High Speed Expansion Connector.
- The ROCK960 Board implements a 4-lane MIPI_DSI interface meeting this requirement. It can support up to FHD(1080p@60fps). The ROCK960 Board routes the MIPI_DSI interface signals to the MIPI_TX1/RX1 interface of the RK3399. The MIPI_TX1/RX1 can also be configured as MIPI CSI by software.

Camera Interface

- The 96Boards specification calls for two camera interfaces.
- The ROCK960 Board supports two camera interfaces, one with a 4-lane MIPI_CSI interface and one with 2-lane MIPI_CSI interface, meeting this requirement. The 4-lane MIPI_CSI interface can support 13M camera.

USB Ports

The RK3399 has two USB 3.0 OTG controller, two USB 2.0 HOST controller, the four USB controllers can work independently, they are implemented on ROCK960 as following:

USB Host

- USB 3.0 OTG1 as USB 3.0 HOST Type A
- USB 2.0 HOST0 as USB 2.0 Type A
- · USB 2.0 HOST1 on the high speed expansion header

USB Type C ports

USB 3.0 OTG0 is implimented as USB Type C

The USB Type C port can work in device mode or host mode. For device mode, it can be used for download/flash the firmware or debugging such as adb. For host mode, it can connect the type c hubs and expand more USB ports or Ethernet or VGA/HDMI/DP.

Note: the type C port can work in one mode at a time, Host mode or Device mode, not both.

Audio

The ROCK960 Board has four audio ports: BT, HDMI, I2S and DP.

DC Power

The ROCK960 Board can be powered by two ways:

- 8V to 18V supply from a dedicated DC jack
- 8V to 18V supply from the DC_IN pins on the Low Speed Expansion Connector

Power Measurement

The current ROCK960 hardware revision(v1.0 and v1.1) has no current sense resistors.

External Fan Connection

The 96Boards specification calls for support for an external fan. That can be achieved by using the 5V or the SYS_DCIN (12V), both present on the Low Speed Expansion connector.

UART

The ROCK960 Board has three UART ports, two(UART3 and UART4) present on the Low Speed Expansion connector and one(UART2) has a dedicated 3 pin header.

- Each UART support up to 4Mbps or other special baud rate
- UART 3 is a full function UART supports auto flow control mode
- UART 2 is the default debug console and the default baud rate is 1.5Mbps. Check the serial console debug for how to setup on PC.

Buttons

The ROCK960 Board presents two buttons. They are Reset key and Maskrom key. The RESET signals are also routed to the Low Speed Expansion connector.

Reset Button

The button serves as the hardware reset button, short press and release the button, the system will be rebooted.

Maskrom Button

The Maskrom Button is for firmware flash/upgrade.

LED Indicators

ROCK960 Board has six LEDs.

Two activity LEDs

- WiFi activity LED –The ROCK960 Board drives this Yellow LED via GPIO4_D5(GPIO number 1157), an IO from RK3399.
- BT activity LED –The ROCK960 Board drives this Blue LED via GPIO4_D6(GPIO number 1158), an IO from RK3399.

Four User LEDs

The four user LEDs are surface mount Green in 0603 size located between two USB type A ports. The ROCK960 Board drives the four LEDs from the RK3399 GPIO:

- LED1 : GPIO4_C2, GPIO number 1146
- LED2: GPIO4 C6, GPIO number 1150

LED3: GPIO4_D0, GPIO number 1152LED4: GPIO4_D4, GPIO number 1156

Additional Functionality

The ROCK960 has an additional M.2 connector, which expose the 4 lanes PCIE 2.1 signal from RK3399, a M.2 SSD can be connected to add more storage.

Back to top

Expansion Connectors

Low Speed Expansion Connector

< Add a table that maps the 96boards signals on the low-speed connector to the SoC signals. Mention the voltage level as a courtesy though they're defined to be 1.8V in the spec. Add any notes as applicable on how to use the various outputs with relevant schematics >

The Low Speed Expansion Connector implements as following on ROCK960.

ROCK960 Signals	96Boards Signals	PIN	PIN	96Boards Signals	ROCK960 Signals
GND	GND	1	2	GND	GND
UART3_CTS	UARTO_CTS	3	4	PWR_BTN_N	PMIC_POWERON
UART3_TX	UART0_TxD	5	6	RST_BTN_N	RESET_L
UART3_RX	UART0_RxD	7	8	SPI0_SCLK	SPI0_CLK
UART3_RTS	UART0_RTS	9	10	SPI0_DIN	SPI0_RX
UART4_TX	UART1_TxD	11	12	SPI0_CS	SPI0_CS
UART4_RX	UART1_RxD	13	14	SPI0_DOUT	SPI0_TX
12C6_SCL	I2C0_SCL	15	16	PCM_FS	I2S0_LRCK_TX
I2C6_SDA	I2C0_SDA	17	18	PCM_CLK	I2S0_SCLK

ROCK960 Signals	96Boards Signals	PIN	PIN	96Boards Signals	ROCK960 Signals
I2C1_SCL	I2C1_SCL	19	20	PCM_DO	12S0_SDO0
I2C1_SDA	I2C1_SDA	21	22	PCM_DI	12S0_SD10
GPIO0_A6	GPIO-A	23	24	GPIO-B	GPIO0_A2
GPIO1_B1	GPIO-C	25	26	GPIO-D	GPIO1_B2
GPIO3_D1	GPIO-E	27	28	GPIO-F	GPIO4_A0
GPIO3_D4	GPIO-G	29	30	GPIO-H	GPIO4_A3
GPIO3_D5	GPIO-I	31	32	GPIO-J	GPIO4_A4
GPIO1_C2	GPIO-K	33	34	GPIO-L	GPIO1_C7
VCC_1V8	+1V8	35	36	SYS_DCIN	VCC12V_DCIN
VCC5V0_SYS	+5V	37	38	SYC_DCIN	VCC12V_DCIN
GND	GND	39	40	GND	GND

UART {0/1}

- The 96Boards specifications calls for a 4-wire UART implementation, UART0 and an optimal second 2-wire UART, UART1 on the Low Speed Expansion Connector.
- The ROCK960 Board implements UART0 as a 4-wire UART that connects directly to the RK3399 SoC. These signals are driven at 1.8V.
- The ROCK960 Board implements UART1 as a 2-wire UART that connects directly to the RK3399 SoC. These signals are driven at 1.8V.

I2C {0/1}

- The 96Boards specification calls for two I2C interfaces to be implemented on the Low Speed Expansion Connector.
- The ROCK960 Board implements both interfaces named I2C1 and I2C6. They connect directly to the RK3399 SoC.

GPIO {A-L}

The 96Boards specification calls for 12 GPIO lines to be implemented on the Low Speed Expansion Connector. Some of these GPIOs may support alternate functions for DSI/CSI control

The ROCK960 board implements this requirement. All GPIOs are routed to the RK3399 SoC. Refer the Low Speed Expansion Connector table for GPIO A-L signals. The GPIO of RK3399 has following features:

- All of GPIOs can be used to generate interrupt to CPU
- GPIO0 and GPIO1 can be used to wakeup system from low-power mode
- The pull direction(pull-up or pull-down) for all of GPIOs are software-programmable
- All of GPIOs are always in input direction in default after power-on-reset
- The drive strength for all of GPIOs is software-programmable

SPI 0

- The 96Boards specification calls for one SPI bus master to be provided on the Low Speed Expansion Connector.
- The ROCK960 Board implements a full SPI master with 4 wires, CLK, CS, MOSI and MISO. The signals are connected directly to the RK3399 SoC and driven at 1.8V.

PCM/I2S

- The 96Boards specification calls for one PCM/I2S bus to be provided on the Low Speed Expansion Connector. The CLK, FS and DO signals are required while the DI is optional.
- The ROCK960 Board implements a PCM/I2S interface with 4 wires, CLK, FS, DO and DI. The signals are connected directly to the RK3399 SoC and driven at 1.8V.

Power and Reset

- The 96Boards specification calls for a signal on the Low Speed Expansion Connector that can power on/off the board and a signal that serves as a board reset signal.
- The ROCK960 Board routes the PWR_BTN_N (named PMIC_PWRON on schematic) signal to the PWRON pin of the PMIC RK805. A mezzanine implementation of this signals should not drive it with any voltage, the only allowed operation is to force it to GND to start the board from a sleep mode.
- The ROCK960 Board routes the RST_BTN_N (named RESET_L on schematic) signal to the NRESPWRON pin of the PMIC RK805. This signal is also routes to SW2100, a push button for reset.

Power Supplies

The 96Boards specification calls for three power rails to be present on the Low Speed Expansion Connector:

- +1.8V Max of 100mA
- +5V Provide a minimum of 5W of power (1A).

SYS_DCIN 8-18V input with enough current to support all the board functions or the output DCIN from on-board DC Connector able to provide a minimum of 7W of power.

The ROCK960 Board supports these requirements as follows:

- +1.8V Driven by PMIC RK805 up to 2500mA. It is the system main 1.8V power (VCC_1V8), and it can supply power up to 200mA to the Low Speed Expansion Connector.
- +5V Driven by a 3A pwm buck converter (SY8113B). It also provides the VBUS power to the two USB host connectors and the HDMI 5V power to the HDMI connector. The remaining capacity provides a max current of 2A to the Low Speed Expansion Connector, for a total of 10W which meets the 96Boards requirements.

SYS_DCIN Can serves as the board's main power source or can receive power from the board.

Back to top

High Speed Expansion Connector

ROCK960 Signals	96Boards Signals	PIN	PIN	96Boards Signals	ROCK960 Signals
SPI4_TX	SD_DAT0/SPI1_DOUT	1	2	CSI0_C+	MIPI_RX0_CLKP
NC	SD_DAT1	3	4	CSI0_C-	MIPI_RX0_CLKN
NC	SD_DAT2	5	6	GND	GND
SPI4_CS	SD_DAT3/SPI1_CS	7	8	CSI0_D0+	MIPI_RX0_D0P
SPI4_CLK	SD_SCLK/SPI1_SCLK	9	10	CSI0_D0-	MIPI_RX0_D0N
SPI4_RX	SD_CMD/SPI1_DIN	11	12	GND	GND
GND	GND	13	14	CSI0_D1+	MIPI_RX0_D1P
MIPI_MCLK0	CLK0/CSI0_MCLK	15	16	CCSI0_D1-	MIPI_RX0_D1N
MIPI_MCLK1	CLK1/CSI1_MCLK	17	18	GND	GND
GND	GND	19	20	CSI0_D2+	MIPI_RX0_D2P
MIPI_CLKP	DSI_CLK+	21	22	CSI0_D2-	MIPI_RX0_D2N
MIPI_CLKN	DSI_CLK-	23	24	GND	GND
GND	GND	25	26	CSI0_D3+	MIPI_RX0_D3P
MIPI_D0P	DSI_D0+	27	28	CSI0_D3-	MIPI_RX0_D3N

ROCK960 Signals	96Boards Signals	PIN	PIN	96Boards Signals	ROCK960 Signals
MIPI_D0N	DSI_D0-	29	30	GND	GND
GND	GND	31	32	I2C2_SCL	I2C2_SCL
MIPI_D1P	DSI_D1+	33	34	I2C2_SCL	I2C2_SDA
MIPI_D1N	DSI_D1-	35	36	I2C3_SDA	I2C7_SCL
GND	GND	37	38	I2C3_SDA	I2C7_SDA
MIPI_D2P	DSI_D2+	39	40	GND	GND
MIPI_D2N	DSI_D2-	41	42	CSI1_D0+	MIPI_TX_D0P
GND	GND	43	44	CSI1_D0-	MIPI_TX_D0N
MIPI_D3P	DSI_D3+	45	46	GND	GND
MIPI_D3N	DSI_D3-	47	48	CSI1_D1+	MIPI_TX_D1P
GND	GND	49	50	CSI1_D1-	MIPI_TX_D1N
HOST1_DP	USB_D+	51	52	GND	GND
HOST1_DM	USB_D-	53	54	CSI1_C+	MIPI_TX_CLKP
GND	GND	55	56	CSI1_C-	MIPI_TX_CLKN
NC	HSIC_STR	57	58	GND	GND
NC	HSIC_DATA	59	60	RESERVED	Pull-up to VIO18_PMU via 100K resistor

MIPI DSI 0

- The 96Boards specification calls for a MIPI-DSI to be present on the High Speed Expansion Connector. A minimum of one lane is required and up to four lanes can be accommodated on the connector.
- The ROCK960 Board implementation supports a full four lane (1.2Gbps/lane) MIPI-DSI interface that is routed to the High Speed Expansion Connector. The MIPI-DSI signals are directly connected to MIPI TX/RX of RK3399.

MIPI CSI {0/1}

- The 96Boards specification calls for two MIPI-CSI interfaces to be present on the High Speed Expansion Connector. Both interfaces are optional. CSI0 interface can be up to four lanes while CSI1 is up to two lanes.
- The ROCK960 Board implementation supports a full four lane MIPI-CSI interface on CSI0 and two lanes of MIPI-CSI on CSI1. All MIPI-CSI signals are routed directly to/from the RK3399 SoC. CSI0 can support up to 13M@30fps and CSI1 can support up to 8M@30fps. The max data rate of each lane is 2.5Gbps.

I2C {2/3}

- The 96Boards specification calls for two I2C interfaces to be present on the High Speed Expansion Connector. Both interfaces are optional unless a MIPI-CSI interface has been implemented. Then an I2C interface shall be implemented.
- The ROCK960 Board implementation supports two MIPI-CSI interfaces and therefore must support
 two I2C interfaces. For MIPI-CSI0 the companion I2C2 is routed directly from the RK3399 SoC. For
 MIPI-CSI1, the companion I2C is I2C3. Each of the I2C line's pull up can be set from RK3399
 internally.

SD/SPI

- The 96Boards specification calls for an SD interface or a SPI port to be part of the High Speed Expansion Connector.
- The ROCK960 Board implements a full SPI master with 4 wires (96Boards SPI Configuration), CLK, CS, MOSI and MISO. All the signals are connected directly to the RK3399 SoC. These signals are driven at 1.8V.

Clocks

- The 96Boards specification calls for one or two programmable clock interfaces to be provided on the High Speed Expansion Connector. These clocks may have a secondary function of being CSI0_MCLK and CSI1_MCLK. If these clocks can't be supported by the SoC than an alternative GPIO or No-Connect is allowed by the specifications.
- The ROCK960 Board implements two CSI clocks which are connected directly to the RK3399 SoC.
 These signals are driven at 1.8V.

USB

- The 96Boards specification calls for a USB Data line interface to be present on the High Speed Expansion Connector.
- The ROCK960 Board implements this requirement by routing USB HOST1 of RK3399 to the High Speed Expansion Connector.

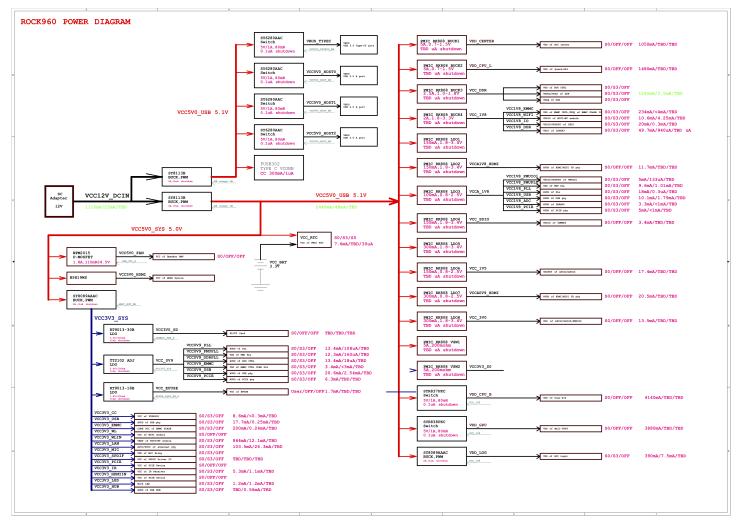
HSIC

- The 96Boards specification calls for an optional MIPI-HSIC interface to be present on the High Speed Expansion Connector.
- The ROCK960 Board implementation doesn't support this optional requirement.

Reserved

The pin 60 of the High Speed Expansion Connector is pulled up to VIO18_PMU via 100K resistor.

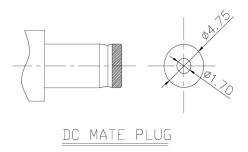
Others


M.2/NGFF Connector

ROCK960 board also exports a M.2 PCIE M key socket, which connects directly to the SoC. The M.2. socket supports M.2 M key or B&M key PCIE SSD.

Back to top

Power Management Overview


Block Diagram

DC Power Input

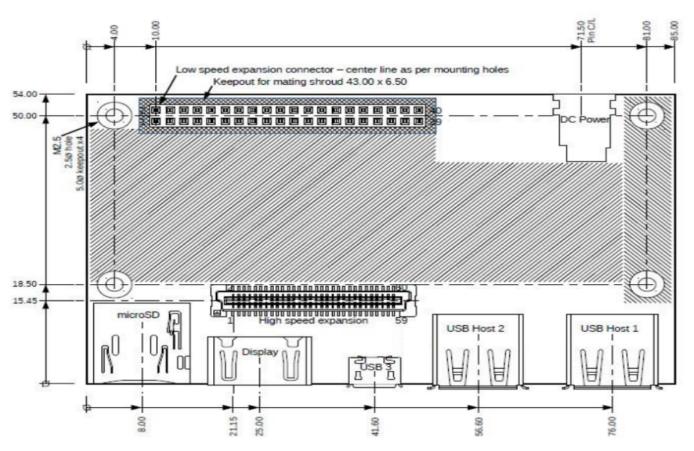
- An 8V to 18V power from a dedicated DC jack.
- An 8V to 18V power from the SYS_DCIN pins on the Low Speed Expansion Connector.

Note: Please refer to the mechanical size of the DC plug below. The inside diameter of the plug is 1.7mm, the outer diameter of the plug is 4.75mm. The positive electrode of the DC plug is in the inside, and the negative pole is outside.

Power Source Selection

The user of the ROCK960 Board should never apply power to the board from DC jack and the Low Speed Expansion connector at the same time. There is no active or passive mechanism on the ROCK960 Board to prioritize one source over the other.

Voltage Rails


Circuit Type	Net Name	Default ON Voltage(V)	lout Max (mA)	Expected use
BUCK1	VDD_CENTER	0.7-1.5	5000	SOC center
BUCK2	VDD_CPU_L	0.7-1.5	5000	Quad A53 cores
виск3	VCC_DDR	1.0-1.8	2500	DDR CTRL and DDR
BUCK4	VCC_1V8_EMMC	1.8	2000	EMMC CTRL and EMMC
	VCC_1V8_WIFI	1.8	2000	WIFI+BT module
	VCC_1V8_IO	1.8	2000	GPIO
	VCC_1V8_DDR	1.8	2000	VDD of LPDDR3

	I	1		
Circuit Type	Net Name	Default ON Voltage(V)	lout Max (mA)	Expected use
LDO1	-	-	-	-
LDO2	VCCA1V8_HDMI	1.8	150	HDMI/MIPI TX pay
LDO3	VCCA_1V8	1.8	100	PMUIO/PMU PLL/USB phy/PCIE phy
LDO4	VCC_SDIO	1.8	150	SDMMC0
LDO5	-	-	-	-
LDO6	VCC_1V5	1.5	150	APIO2/APIO4
LDO7	VCCA0V9_HDMI	0.9	300	HDMI/MIPI TX phy
LDO8	VCC_3V0	3	300	APIO2/APIO4/PMUIO2
BUCK	VDD_CPU_B	0.7125- 1.5	1000	Dual A72 cores
	VDD_GPU	0.7125- 1.5	1000	Mali-T860MP4
	VDD_LOG	1.8	2000	SOC logic
USB	VBUS_TYPEC	5	1000	USB 3.0 Type-C0 port
	VCC5V0_HOST0	5	1000	USB 2.0 A port
	VCC5V0_HOST1	5	1000	USB 2.0 A port
	VCC5V0_HOST2	5	1000	USB 3.0 A port
BUCK	VCC5V0_HDMI	5	3000	HDMI device
	VCC3V0_SD	3	500	SD/TF Card
	VCC_0V9	0.9	500	PLL/PMU PLL/DDR CTRL/EMMC CTRL CORE/USB phy/PCIE phy
	VCC_EFUSE	1.8	500	EFUSE

Circuit Type	Net Name	Default ON Voltage(V)	lout Max (mA)	Expected use
Other				
	DC_IN	8 ~ 18	1000	8-18V DCIN on LS connector as output
	DC_IN	8 ~ 18	3000	8-18V DCIN on LS connector as input

Mechanical Specification

2D Reference Drawing

